3.129 \(\int x (d+e x^2)^{3/2} (a+b \text {csch}^{-1}(c x)) \, dx\)

Optimal. Leaf size=270 \[ \frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}+\frac {b c d^{5/2} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-c^2 x^2-1}}\right )}{5 e \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-c^2 x^2-1} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {b x \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {-c^2 x^2-1}}{c \sqrt {d+e x^2}}\right )}{40 c^4 \sqrt {e} \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-c^2 x^2-1} \left (7 c^2 d-3 e\right ) \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}} \]

[Out]

1/5*(e*x^2+d)^(5/2)*(a+b*arccsch(c*x))/e+1/5*b*c*d^(5/2)*x*arctan((e*x^2+d)^(1/2)/d^(1/2)/(-c^2*x^2-1)^(1/2))/
e/(-c^2*x^2)^(1/2)+1/40*b*(15*c^4*d^2-10*c^2*d*e+3*e^2)*x*arctan(e^(1/2)*(-c^2*x^2-1)^(1/2)/c/(e*x^2+d)^(1/2))
/c^4/e^(1/2)/(-c^2*x^2)^(1/2)+1/20*b*x*(e*x^2+d)^(3/2)*(-c^2*x^2-1)^(1/2)/c/(-c^2*x^2)^(1/2)+1/40*b*(7*c^2*d-3
*e)*x*(-c^2*x^2-1)^(1/2)*(e*x^2+d)^(1/2)/c^3/(-c^2*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 270, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {6300, 446, 102, 154, 157, 63, 217, 203, 93, 204} \[ \frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}+\frac {b x \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {-c^2 x^2-1}}{c \sqrt {d+e x^2}}\right )}{40 c^4 \sqrt {e} \sqrt {-c^2 x^2}}+\frac {b c d^{5/2} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-c^2 x^2-1}}\right )}{5 e \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-c^2 x^2-1} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-c^2 x^2-1} \left (7 c^2 d-3 e\right ) \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[x*(d + e*x^2)^(3/2)*(a + b*ArcCsch[c*x]),x]

[Out]

(b*(7*c^2*d - 3*e)*x*Sqrt[-1 - c^2*x^2]*Sqrt[d + e*x^2])/(40*c^3*Sqrt[-(c^2*x^2)]) + (b*x*Sqrt[-1 - c^2*x^2]*(
d + e*x^2)^(3/2))/(20*c*Sqrt[-(c^2*x^2)]) + ((d + e*x^2)^(5/2)*(a + b*ArcCsch[c*x]))/(5*e) + (b*(15*c^4*d^2 -
10*c^2*d*e + 3*e^2)*x*ArcTan[(Sqrt[e]*Sqrt[-1 - c^2*x^2])/(c*Sqrt[d + e*x^2])])/(40*c^4*Sqrt[e]*Sqrt[-(c^2*x^2
)]) + (b*c*d^(5/2)*x*ArcTan[Sqrt[d + e*x^2]/(Sqrt[d]*Sqrt[-1 - c^2*x^2])])/(5*e*Sqrt[-(c^2*x^2)])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 102

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m - 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 1)), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 6300

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^(p +
 1)*(a + b*ArcCsch[c*x]))/(2*e*(p + 1)), x] - Dist[(b*c*x)/(2*e*(p + 1)*Sqrt[-(c^2*x^2)]), Int[(d + e*x^2)^(p
+ 1)/(x*Sqrt[-1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1]

Rubi steps

\begin {align*} \int x \left (d+e x^2\right )^{3/2} \left (a+b \text {csch}^{-1}(c x)\right ) \, dx &=\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}-\frac {(b c x) \int \frac {\left (d+e x^2\right )^{5/2}}{x \sqrt {-1-c^2 x^2}} \, dx}{5 e \sqrt {-c^2 x^2}}\\ &=\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}-\frac {(b c x) \operatorname {Subst}\left (\int \frac {(d+e x)^{5/2}}{x \sqrt {-1-c^2 x}} \, dx,x,x^2\right )}{10 e \sqrt {-c^2 x^2}}\\ &=\frac {b x \sqrt {-1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}+\frac {(b x) \operatorname {Subst}\left (\int \frac {\sqrt {d+e x} \left (-2 c^2 d^2-\frac {1}{2} \left (7 c^2 d-3 e\right ) e x\right )}{x \sqrt {-1-c^2 x}} \, dx,x,x^2\right )}{20 c e \sqrt {-c^2 x^2}}\\ &=\frac {b \left (7 c^2 d-3 e\right ) x \sqrt {-1-c^2 x^2} \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}-\frac {(b x) \operatorname {Subst}\left (\int \frac {2 c^4 d^3+\frac {1}{4} e \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) x}{x \sqrt {-1-c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{20 c^3 e \sqrt {-c^2 x^2}}\\ &=\frac {b \left (7 c^2 d-3 e\right ) x \sqrt {-1-c^2 x^2} \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}-\frac {\left (b c d^3 x\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {-1-c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{10 e \sqrt {-c^2 x^2}}-\frac {\left (b \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) x\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1-c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{80 c^3 \sqrt {-c^2 x^2}}\\ &=\frac {b \left (7 c^2 d-3 e\right ) x \sqrt {-1-c^2 x^2} \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}-\frac {\left (b c d^3 x\right ) \operatorname {Subst}\left (\int \frac {1}{-d-x^2} \, dx,x,\frac {\sqrt {d+e x^2}}{\sqrt {-1-c^2 x^2}}\right )}{5 e \sqrt {-c^2 x^2}}+\frac {\left (b \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) x\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {d-\frac {e}{c^2}-\frac {e x^2}{c^2}}} \, dx,x,\sqrt {-1-c^2 x^2}\right )}{40 c^5 \sqrt {-c^2 x^2}}\\ &=\frac {b \left (7 c^2 d-3 e\right ) x \sqrt {-1-c^2 x^2} \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}+\frac {b c d^{5/2} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1-c^2 x^2}}\right )}{5 e \sqrt {-c^2 x^2}}+\frac {\left (b \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) x\right ) \operatorname {Subst}\left (\int \frac {1}{1+\frac {e x^2}{c^2}} \, dx,x,\frac {\sqrt {-1-c^2 x^2}}{\sqrt {d+e x^2}}\right )}{40 c^5 \sqrt {-c^2 x^2}}\\ &=\frac {b \left (7 c^2 d-3 e\right ) x \sqrt {-1-c^2 x^2} \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}+\frac {b \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) x \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {-1-c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{40 c^4 \sqrt {e} \sqrt {-c^2 x^2}}+\frac {b c d^{5/2} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1-c^2 x^2}}\right )}{5 e \sqrt {-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.80, size = 314, normalized size = 1.16 \[ \frac {\sqrt {d+e x^2} \left (8 a c^3 \left (d+e x^2\right )^2+8 b c^3 \text {csch}^{-1}(c x) \left (d+e x^2\right )^2+b e x \sqrt {\frac {1}{c^2 x^2}+1} \left (c^2 \left (9 d+2 e x^2\right )-3 e\right )\right )}{40 c^3 e}-\frac {b x \sqrt {\frac {1}{c^2 x^2}+1} \left (8 c^7 d^{5/2} \sqrt {-d-e x^2} \tan ^{-1}\left (\frac {\sqrt {d} \sqrt {c^2 x^2+1}}{\sqrt {-d-e x^2}}\right )+\sqrt {c^2} \sqrt {e} \sqrt {c^2 d-e} \left (-15 c^4 d^2+10 c^2 d e-3 e^2\right ) \sqrt {\frac {c^2 \left (d+e x^2\right )}{c^2 d-e}} \sinh ^{-1}\left (\frac {c \sqrt {e} \sqrt {c^2 x^2+1}}{\sqrt {c^2} \sqrt {c^2 d-e}}\right )\right )}{40 c^6 e \sqrt {c^2 x^2+1} \sqrt {d+e x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x*(d + e*x^2)^(3/2)*(a + b*ArcCsch[c*x]),x]

[Out]

(Sqrt[d + e*x^2]*(8*a*c^3*(d + e*x^2)^2 + b*e*Sqrt[1 + 1/(c^2*x^2)]*x*(-3*e + c^2*(9*d + 2*e*x^2)) + 8*b*c^3*(
d + e*x^2)^2*ArcCsch[c*x]))/(40*c^3*e) - (b*Sqrt[1 + 1/(c^2*x^2)]*x*(Sqrt[c^2]*Sqrt[c^2*d - e]*Sqrt[e]*(-15*c^
4*d^2 + 10*c^2*d*e - 3*e^2)*Sqrt[(c^2*(d + e*x^2))/(c^2*d - e)]*ArcSinh[(c*Sqrt[e]*Sqrt[1 + c^2*x^2])/(Sqrt[c^
2]*Sqrt[c^2*d - e])] + 8*c^7*d^(5/2)*Sqrt[-d - e*x^2]*ArcTan[(Sqrt[d]*Sqrt[1 + c^2*x^2])/Sqrt[-d - e*x^2]]))/(
40*c^6*e*Sqrt[1 + c^2*x^2]*Sqrt[d + e*x^2])

________________________________________________________________________________________

fricas [A]  time = 2.01, size = 1625, normalized size = 6.02 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)^(3/2)*(a+b*arccsch(c*x)),x, algorithm="fricas")

[Out]

[1/160*(8*b*c^5*d^(5/2)*log(((c^4*d^2 + 6*c^2*d*e + e^2)*x^4 + 8*(c^2*d^2 + d*e)*x^2 - 4*((c^3*d + c*e)*x^3 +
2*c*d*x)*sqrt(e*x^2 + d)*sqrt(d)*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + 8*d^2)/x^4) + (15*b*c^4*d^2 - 10*b*c^2*d*e +
3*b*e^2)*sqrt(e)*log(8*c^4*e^2*x^4 + c^4*d^2 + 6*c^2*d*e + 8*(c^4*d*e + c^2*e^2)*x^2 + 4*(2*c^4*e*x^3 + (c^4*d
 + c^2*e)*x)*sqrt(e*x^2 + d)*sqrt(e)*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + e^2) + 32*(b*c^5*e^2*x^4 + 2*b*c^5*d*e*x^
2 + b*c^5*d^2)*sqrt(e*x^2 + d)*log((c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + 1)/(c*x)) + 4*(8*a*c^5*e^2*x^4 + 16*a*
c^5*d*e*x^2 + 8*a*c^5*d^2 + (2*b*c^4*e^2*x^3 + 3*(3*b*c^4*d*e - b*c^2*e^2)*x)*sqrt((c^2*x^2 + 1)/(c^2*x^2)))*s
qrt(e*x^2 + d))/(c^5*e), 1/80*(4*b*c^5*d^(5/2)*log(((c^4*d^2 + 6*c^2*d*e + e^2)*x^4 + 8*(c^2*d^2 + d*e)*x^2 -
4*((c^3*d + c*e)*x^3 + 2*c*d*x)*sqrt(e*x^2 + d)*sqrt(d)*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + 8*d^2)/x^4) - (15*b*c^
4*d^2 - 10*b*c^2*d*e + 3*b*e^2)*sqrt(-e)*arctan(1/2*(2*c^2*e*x^3 + (c^2*d + e)*x)*sqrt(e*x^2 + d)*sqrt(-e)*sqr
t((c^2*x^2 + 1)/(c^2*x^2))/(c^2*e^2*x^4 + (c^2*d*e + e^2)*x^2 + d*e)) + 16*(b*c^5*e^2*x^4 + 2*b*c^5*d*e*x^2 +
b*c^5*d^2)*sqrt(e*x^2 + d)*log((c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + 1)/(c*x)) + 2*(8*a*c^5*e^2*x^4 + 16*a*c^5*
d*e*x^2 + 8*a*c^5*d^2 + (2*b*c^4*e^2*x^3 + 3*(3*b*c^4*d*e - b*c^2*e^2)*x)*sqrt((c^2*x^2 + 1)/(c^2*x^2)))*sqrt(
e*x^2 + d))/(c^5*e), 1/160*(16*b*c^5*sqrt(-d)*d^2*arctan(1/2*((c^3*d + c*e)*x^3 + 2*c*d*x)*sqrt(e*x^2 + d)*sqr
t(-d)*sqrt((c^2*x^2 + 1)/(c^2*x^2))/(c^2*d*e*x^4 + (c^2*d^2 + d*e)*x^2 + d^2)) + (15*b*c^4*d^2 - 10*b*c^2*d*e
+ 3*b*e^2)*sqrt(e)*log(8*c^4*e^2*x^4 + c^4*d^2 + 6*c^2*d*e + 8*(c^4*d*e + c^2*e^2)*x^2 + 4*(2*c^4*e*x^3 + (c^4
*d + c^2*e)*x)*sqrt(e*x^2 + d)*sqrt(e)*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + e^2) + 32*(b*c^5*e^2*x^4 + 2*b*c^5*d*e*
x^2 + b*c^5*d^2)*sqrt(e*x^2 + d)*log((c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + 1)/(c*x)) + 4*(8*a*c^5*e^2*x^4 + 16*
a*c^5*d*e*x^2 + 8*a*c^5*d^2 + (2*b*c^4*e^2*x^3 + 3*(3*b*c^4*d*e - b*c^2*e^2)*x)*sqrt((c^2*x^2 + 1)/(c^2*x^2)))
*sqrt(e*x^2 + d))/(c^5*e), 1/80*(8*b*c^5*sqrt(-d)*d^2*arctan(1/2*((c^3*d + c*e)*x^3 + 2*c*d*x)*sqrt(e*x^2 + d)
*sqrt(-d)*sqrt((c^2*x^2 + 1)/(c^2*x^2))/(c^2*d*e*x^4 + (c^2*d^2 + d*e)*x^2 + d^2)) - (15*b*c^4*d^2 - 10*b*c^2*
d*e + 3*b*e^2)*sqrt(-e)*arctan(1/2*(2*c^2*e*x^3 + (c^2*d + e)*x)*sqrt(e*x^2 + d)*sqrt(-e)*sqrt((c^2*x^2 + 1)/(
c^2*x^2))/(c^2*e^2*x^4 + (c^2*d*e + e^2)*x^2 + d*e)) + 16*(b*c^5*e^2*x^4 + 2*b*c^5*d*e*x^2 + b*c^5*d^2)*sqrt(e
*x^2 + d)*log((c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + 1)/(c*x)) + 2*(8*a*c^5*e^2*x^4 + 16*a*c^5*d*e*x^2 + 8*a*c^5
*d^2 + (2*b*c^4*e^2*x^3 + 3*(3*b*c^4*d*e - b*c^2*e^2)*x)*sqrt((c^2*x^2 + 1)/(c^2*x^2)))*sqrt(e*x^2 + d))/(c^5*
e)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (e x^{2} + d\right )}^{\frac {3}{2}} {\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)^(3/2)*(a+b*arccsch(c*x)),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)^(3/2)*(b*arccsch(c*x) + a)*x, x)

________________________________________________________________________________________

maple [F]  time = 0.43, size = 0, normalized size = 0.00 \[ \int x \left (e \,x^{2}+d \right )^{\frac {3}{2}} \left (a +b \,\mathrm {arccsch}\left (c x \right )\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(e*x^2+d)^(3/2)*(a+b*arccsch(c*x)),x)

[Out]

int(x*(e*x^2+d)^(3/2)*(a+b*arccsch(c*x)),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {{\left (e x^{2} + d\right )}^{\frac {5}{2}} a}{5 \, e} + \frac {1}{5} \, {\left (\frac {{\left (e^{2} x^{4} + 2 \, d e x^{2} + d^{2}\right )} \sqrt {e x^{2} + d} \log \left (\sqrt {c^{2} x^{2} + 1} + 1\right )}{e} + 5 \, \int \frac {{\left (c^{2} e^{2} x^{5} + 2 \, c^{2} d e x^{3} + c^{2} d^{2} x\right )} \sqrt {e x^{2} + d}}{5 \, {\left (c^{2} e x^{2} + {\left (c^{2} e x^{2} + e\right )} \sqrt {c^{2} x^{2} + 1} + e\right )}}\,{d x} - 5 \, \int \frac {{\left ({\left (5 \, e^{2} \log \relax (c) + e^{2}\right )} c^{2} x^{5} + {\left ({\left (5 \, d e \log \relax (c) + 2 \, d e\right )} c^{2} + 5 \, e^{2} \log \relax (c)\right )} x^{3} + {\left (c^{2} d^{2} + 5 \, d e \log \relax (c)\right )} x + 5 \, {\left (c^{2} e^{2} x^{5} + {\left (c^{2} d e + e^{2}\right )} x^{3} + d e x\right )} \log \relax (x)\right )} \sqrt {e x^{2} + d}}{5 \, {\left (c^{2} e x^{2} + e\right )}}\,{d x}\right )} b \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)^(3/2)*(a+b*arccsch(c*x)),x, algorithm="maxima")

[Out]

1/5*(e*x^2 + d)^(5/2)*a/e + 1/5*((e^2*x^4 + 2*d*e*x^2 + d^2)*sqrt(e*x^2 + d)*log(sqrt(c^2*x^2 + 1) + 1)/e + 5*
integrate(1/5*(c^2*e^2*x^5 + 2*c^2*d*e*x^3 + c^2*d^2*x)*sqrt(e*x^2 + d)/(c^2*e*x^2 + (c^2*e*x^2 + e)*sqrt(c^2*
x^2 + 1) + e), x) - 5*integrate(1/5*((5*e^2*log(c) + e^2)*c^2*x^5 + ((5*d*e*log(c) + 2*d*e)*c^2 + 5*e^2*log(c)
)*x^3 + (c^2*d^2 + 5*d*e*log(c))*x + 5*(c^2*e^2*x^5 + (c^2*d*e + e^2)*x^3 + d*e*x)*log(x))*sqrt(e*x^2 + d)/(c^
2*e*x^2 + e), x))*b

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int x\,{\left (e\,x^2+d\right )}^{3/2}\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(d + e*x^2)^(3/2)*(a + b*asinh(1/(c*x))),x)

[Out]

int(x*(d + e*x^2)^(3/2)*(a + b*asinh(1/(c*x))), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x**2+d)**(3/2)*(a+b*acsch(c*x)),x)

[Out]

Timed out

________________________________________________________________________________________